Component Mixing

STARS uses K-values to determine component transitions. We will only look at the model in question: Water, dead oil, and gas dissolved in the oil (no free gas).

A central notion is mole fractions:

Gas mole fraction, denoted y
Oil mole fraction, denoted x
Water mole fraction, denoted w

Then, component mixing is defined by *K-values*, which (in general) are functions of pressure and temperature.

Aqueous components; water is the reference liquid phase, and K-values defined by

$$K(\text{gas/liq}) = y/w$$

 $K(\text{liq/liq}) = x/w$

Oleic components; oil phase is the reference liquid, and *K*-values:

$$K(\text{gas/liq}) = y/x$$

 $K(\text{liq/liq}) = w/x$

Default Partitioning of Components (used when user input is absent or defaulted)

- Aqueous components are based in the water phase. No partitioning in the oil phase
- Oleic components are based in the oil phase, and will not vaporize. No partitioning into aqueous phase (Desired behavior for dead-oil component)

Gas-Liquid K value Correlations

Specified in STARS by defining 5 parameters, $kv_1 - kv_5$.

The *K*-value of component *i* is then:

$$K_i(p,T) = \left(\frac{kv_{1i}}{p} + kv_{2i} * p + kv_{3i}\right) e^{\left(\frac{kv_{4i}}{T - kv_{5i}}\right)}$$

As we (for now) are only interested in isothermal models, the exponential term vanishes.

Defining kv-values is done by the keywords KV1 - KV5.

Any non-defined KV-value will be set to zero. Note exception: For the *aqueous components*, setting all kvs to zero forces the use of STARS internal aqueous model. To actually set K = 0 for water, define a nonzero value for kv_4 , and set the others to zero.

Syntax

KV1
$$kv_{1,1} kv_{1,2} ... kv_{1,numx}$$

KV2 $kv_{2,1} kv_{2,2} ... kv_{2,numx}$
KV3 $kv_{3,1} kv_{3,2} ... kv_{3,numx}$
KV4 $kv_{4,1} kv_{4,2} ... kv_{4,numx}$
KV5 $kv_{5,1} kv_{5,2} ... kv_{5,numx}$

(where *numx* is the total number of components in the liquid phases (water or oil).