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Main effects of depressurisation influencing
oll recovery

Change In fluid properties

Change in fluid saturation

Change in phase mobillities

Change in rock properties
+ +
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Change In fluid saturation
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Gas originating from depressurisation has mobility
that may be 2 orders of magnitude lower than
Injection gas
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Altered flow pattern caused by
change in rock properties

Which conditions are needed to reduce

flow preference to high permeable
channels?

(homogenization of reservoir sands)

Are necessary conditions present?

Centre for Integrated Petroleum Research - CIPR



Very high channel perm, high background perm
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Moderate channel perm, low background perm
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Young’'s Modulus vs. rock strength

Observed trend:
Curves are steeper
when initial E is
larger,

l.e.

strong rocks grow
stronger more
rapidly under load
than weaker rocks
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Young’'s Modulus, weak sands / sandstones
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Specific Volumes vs. sand strength

Pore Volume fraction
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Permeability vs. load — measured data
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Permeability vs. load —assumption
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Moderate channel perm, low background perm,
Permeability reduction model o* = 1000
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Pressure distribution “some time” into
depressurisation, conseqguence for wells’ Pl
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Inferences — effects of compaction during
depressurisation

+ Reduces pressure reduction rate — energy supply

+ Reduces permeability contrasts — stops water cycling
through high permeability channels

- Reduces well productivity
- Reduces general conductivity
- May induce pore collapse / sand production

? Production scheme may be critical
? Late stage injection may be advantegous
? Stimulation, fracturing, gas lift may be necessary
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