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Main effects of depressurization influencing
oll recovery

Change in fluid properties

Change in fluid saturation

Change in phase mobillities

Change in rock properties
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Main effects of depressurization
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Change in fluid properties g
Pressure decline will give: = 51

- larger phase viscosities and densities 0 o
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( because gas-oil IFT is larger at lower pressure ) presse (psia)

Change in fluid saturation
Pressure decline will give:

- shrinkage of oil due to mass exchanges

- gas expansion Pressure below bubble point
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Production below bubblepoint
Phenomenological events

Pressure decline

below saturation pressure
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General trend from literature data
higher dra\ﬂvdown rate
higher supersaturation

more bubbles nucleated
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Pressure decline rate (1,/n)
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Example of an oil field

with poor pressure
communication and therefore
high Sgcr around production
Wells

=

Sgc = [log (dP*/dt) —log C)] / D
Example: C =5.4x10-6 and D = 25.06

g |

The pressure decline rate used to calculate
the critical gas saturation is defined as pressure decline
from time t1 (hours) to time t2 (hours) relative to Pb per hour :
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dP*/dt = [ P(t1) - P(t2) ] / [ Pb x (t2-t1) ] -
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Using a variable Sgcr 2 150 - & measured
gives better match of 5 A
production GOR § 1004 O ro Sge
Examples from matching 7
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Source: Egermann et al, SCA 2000
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Gas originating from depressurization has mobility
that may be 2 orders of magnitude lower than
Injection gas
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Background

Experimental data show that relative permeability from

Internal and external gas drive processes can be different:
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Figure 8: comparison between gas injection and solution gas drive K, curves

Egermann, P., Vizika, O. (2000). A new Method to Determine Critical Gas saturation and Relative Permeability During
Depressurisation in the Near-Wellbore Region. Soc. Core Analyst. Proceedings, Oct. 18-22, 2000.
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Visualisation of network model results

Many small pores, many bubbles, = Many large pores, few bubbles,

low coordination number: high coordination number:
oil
gas gas
oil
Gas phase is poorly connected Gas phase is well connected
— krg low & Sgc high — krg high & Sgc low
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Summary pore structure and rel perms

1)k,, is controlled by coordination number rather than by the
process, the pore size distribution or the bubble density

2)k,4 Is sensitive to both coordination number, process type,
pore size distribution and bubble density
» Kk 4(external) =k, (internal) in well connected network with
many large pores and at low bubble density

»  kg(external) >k (internal) in poorly connected network
with many small pores and a high bubble density

Warning - Be careful about generating internal drive gas relative
permeability data based on external drive experiments!

”Comparison of Relative Permeability Resulting From Internal
and External gas Drive Processes — A Network Modelling Study”

Susanne Poulsen?, Steven McDougall?, Ken Sorbie? and Arne Skauge3
1. DTU, Denmark 2. Heriot-Watt U. UK 3. CIPR, UoB (Norsk Hydro) Norway Centre for Integrated Petroleum Research
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Can pressure depletion altered flow
pattern caused by change in rock
properties?

If so, what are the condition needed to change
the flow pattern?
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Theory vs. experimental data

 Young’'s modulus vs. effective stress for typical
sandstones
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Permeability vs. load — measured data

Weak sands o000
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greater loss of 5000
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Permeability vs. load — assumption

WS: weak sandstone
US: unconsolidated sand
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Theory vs. experimental data

 Permeability vs. effective stress
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Oil production Water production
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Remaining oil in place for different rock formations
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Moderate channel perm, low background perm
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Moderate channel perm, low background perm,
Permeabillity reduction model * = 1000

Flotdz 200741
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Pressure distribution “some time” into
depressurization, consequence for wells’ Pl

FlotAz 20025 1

Pressure (BARSS)

B

Centre for Integrated Petroleum Research )
University of Bergen, Norway IPF




+

Inferences — effects of compaction during
depressurization

Reduces pressure reduction rate — energy supply

Reduces permeability contrasts — stops water cycling through
high permeability channels

Reduces well productivity
Reduces general conductivity
May induce pore collapse / sand production

Production scheme may be critical

Late stage injection may be advantageous
Stimulation, fracturing, gas lift may be necessary
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Summary of change in rock properties

Empirical data show that permeability reduction due
to increase in stress is stronger for high initial
permeability

Selective permeability reduction may occur in
reservoirs comprised of weak high-permeability soils
In a background of stronger low-permeability soils

This permeability homogenization may increase the
sweep efficiency by reducing water cycling through
high permeability layers
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Guidelines for simulation of depressurization

Capilflary forces will vary with pressure decline, and may affect the buoyancy movement
of gas

Correct pVT data for the pressure decline range is needed

The simulator has to handle gas relative permeabilities coming from different sources
(influx versus internal generated gas in the grid block)

Rock material with;
- low coordination number
- low permeability (more exact description - many small pores)
- experiencing high depletion rate

will have the largest demand for the complex gas rel perm model

Sgcr should be coupled to grid block historical pressure decline rate

The necessary geomechanical modelling (improved modelling of rock compaction)
needs to be coupled to the reservoir simulator
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