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Real History Matching

Original photography

Official photography after
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What is History Matching?

@ Standard procedure:

—From a system of equations L(u(x), a, x) =0 with I.C. and B.C.
find the solution u(x), with known parameters a.

@ History matching:

—From a system of equations L(u(x), a, x) =0 with I.C. and the
solution u(x) known, determine the boundary conditions and
parameter set a.

~ Normally some of the B.C.'s and (part of) a will be known.
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History Matching in Practice
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® u(x) will not be known as a continuous function of a
continuous space/time variable, but only at a few points in
space at a few times. Mathematically, the solution is
unknown almost everywhere.

—The achieved B.C. "solution" cannot be unique.

@ In addition the known (sparse) solution ui(xi) is not always
reliable.
(standard uncertainty, allocation errors, coarse errors).

® The observed quantity may reflect a realisation of the
solution which is not possible to model, and therefore
would be wrong to honour.

® Our task is to critically utilize the provided historical data in
the best possible manner, such that the parameters we
determine by the H.M. process are the most likely ones from
a physical point of view. (Difficult, difficult,....)




Heterogeneity: Sandstone Outcrop
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Idealised Heterogeneous X-Section
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After Upscaling to a Simulation Grid
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Heterogeneity Modelling (generic example Field A)

Cum. oil produced

Deterministic

case

— Different heterogeneity

cases
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Field A History Matching:
Region Pressure -- Best result after > 200 runs
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Example rock compaction curves
(ROCK constant and Irreversible ROCKTAB)
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Classification of Compaction

Pc (Conf. press.)

Reversible elastic Compaction by

Overburden

With hysteresis

Irreversible elastic

Normalized Pore Volume

Pp (Pore pressure)
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Time-dependent compaction (creep) --
1 cm reservoir compaction pr. year

Simulated Region Pressure (bar)
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The Influence of Rock Mechanics

e By tweaking compaction curves on a per-region basis,
pore volume change can be modelled to honour history

e A better approach would be to compute the changes from
the stress-strain relations

e We should expect that compaction also influences permeability,
including permeability isotropy

e WWhat if the soil doesn't behave like a stable soil / rock at all?
e Are Darcy's law and the flow equations still valid?
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Elastic moduli

Field B -- Weak Sandstone

‘ Field A -- Weak Sandstone ‘
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Elasticity with permanent deformation ("Irreversible")

"Ideal"
lrrev.

Christian
Michelsen e
Research




Permeability vs stress
Unconsolidated Sand Field A

Initial permeability (100%): 4138 mD

100 |
SN \\
2 - 1. load
O 60 - 1. unload
= E e
()] C
Q - \ 2. load
§ 40 S A
= A N o O\ 2. unload
E C A A S —
- i A
5 20 )
- ‘77777‘777777‘***********f7******——f7ﬂ
0 - | | | | | | | |

|
69 138 207 276 345 414 483 552 621

Christian :

Michelsen Mean effective stress [bars]

Research




Permeability vs stress
Unconsolidated Sand Field B
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Normalised permeability (%)
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Permeability vs stress
Unconsolidated Sand Field C

Initial permeability (100%): ~3 D
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Permeabilities from transient test analysis

Field A
Permeability, mD
6 000 -
5500 _
5000
4500 :
4000
3500 :
3 000
300 295 290 285 280 275 270
Reservoir pressure (perm. press. gauge)
e " Production tests during 2 years
Research




Soil strength
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OA: Increasing -- slightly convex

AB: Increasing -- linear
OAB: Elastic (appr. linear)

BC: Increasing -- concave
Ductile: Can endure permanent
deformation without losing
ability to withstand load.

CD: Decreasing
Brittle: Ability to withstand
loading decreases with
increasing deformation.
"Brittleness": Largest slope
angle on CD.

(In theory a continuous process
through CD. In practice sudden
failure occurs at some point on
CD: Total loss of cohesion across
a plane.)




Soil strength:
Hysteresis and deformation

OB: Perfect elasticity
(No irreversible behaviour)

P BC: Irreversible changes occur
Successive loading / unloading
by different curves. E.g. PQ
gives a permanently set
deformation g.

QR YPQ, but R still on BC.

CD: Unloading curve ST often
results in large permanent
deformation. The following load
sequence TU meets CD on a
lower stress level than S.

Characteristic for brittle matr's,
0 £ e but normally hidden by failure
near point C.
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Elasto-plasticity and failure

p-space
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Yield criterion: Specified surface in p-space where failure occurs.

In elasto-plasticity the yield surface can change with time, as the
material hardens.

deal plasticity: Initial yield surface = failure surface.




Sand / soil strength (Creep)
Elasticity -> Plasticity -> Failure

Field A, 4343m, Pp = 1bar
Static strain rate *E-8 (1/s)
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Fluid flow in microfractures (joints)
generated by impurities

Shear stress can imply
Crushing of the smallest asperities
Opening of the joint
Macroscopic enhanced perm.
in the major stress direction.

= Rotation of flow direction
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Field A, Vertical elastic displacement
Vs. time at top reservoir level
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Field A, Vertical Elastic Displacement
N-S section, Time 1517 days (4 yrs 2 mnths)

PARAMETER:
DEZ07
E
0.127115
0.042764
_-0.041586
-0.125937
-0.210288
SR -0.294638
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Conclusion

Although Newton's laws of motion are perfectly
adequate for everyday physics,

no-one would even consider using them at the
Planck scale, or at galaxy scale
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