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Research areas

� Compaction modelling
� Improved coupled simulation 

(rock mechanics ↔ flow simulation)
� Stress modelling in faults

� Fault generation
� Stress field in / close to faults
� Dynamic sealing properties
� Mesh issues: Refinement / Adaptive remeshing



Governing Equations (simplified)
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Coupling

� Flow equations depend on the stress field since
permeability and porosity are stress-dependent

� Stress-strain equations depend on fluid flow state through
the fluid pressure term

� Fluid flow equations are implicitely coupled to stress 
through compaction, which may change bulk control
volumes



Compaction Modelling

� Reservoir Simulator: Compaction is a function of
fluid pressure, Cr = Cr(pf)

� Reality: Compaction is a function of effective stress
Æ the difference between (confining) total stress and fluid pressure

� Measure for compaction in a simulator grid cell,
Pore Volume Multiplier,

 volumepore cell initial
volumeporecellcurrent

=PVmult



Computing PVmult

� From reservoir simulator:
PVmult(pf) from Cr(pf) (table look-up)

� From rock mechanics simulator
PVmult(strain) = exp(-∆ vol. strain)



Fluid Pressure and Stress

For practical purposes,

fp−= σσ '
where
σ’ and σ are effective and total stress
pf is fluid pressure

I.e.: Assuming compaction is a function of fluid 
pressure
is equivalent to assuming total stress is constant,
or 
mean effective stress vs. fluid pressure is a straight 
line



Correlation: Mean Eff. Stress vs. Fluid Pressure
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The main reason for the discrepancy is that the reservoir
simulator knows nothing about actual soil displacement 
in the reservoir. (Boundary effects – “arching”)

PVmult(pf)
(Reservoir only) PVmult(strain) (Reservoir and sideburdens)



Coupling Modes

� Fully coupled
� Full system of fluid flow and rock mechanics 

equations solved simultaneously at each time step
& Most accurate solution
' Takes long to run
' No fully coupled simulator includes all options that 

exist in commercial flow simulators or rock 
mechanics simulators



There is a growing awareness that
• Dynamic reservoir stress state often has significant
influence on petrophysics and fluid production

• These processes can only be understood by performing
coupled simulations 
(Rock mechanics simulator – Reservoir simulator)

In this study:

Finite Difference Reservoir simulator: 
ECLIPSE from Schlumberger

Finite Element Rock Mech. simulator: 
VISAGE from V.I.P.S Ltd.



Coupling Modes: Explicit Coupling

Stress
step

ECLIPSE

Prod.
dynamics

Compaction
data

Pressure /
sat. state
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state

Adjust
petrophysics

ECLIPSE

time



Explicit Coupling

& Relatively fast
& Provides reasonably good reservoir stress state 

distribution (but not level )
' Questionable accuracy w.r.t. compaction modelling



Coupling Modes: Iterative Coupling
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Prod.
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Compaction
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PVmult(pf )

VISAGE

Stress / strain
state

PVmult(strain)

Adjust
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time

If these are different:
Update cell
pore volumes



Iterative Coupling

& Good reservoir stress state distribution and level,
¾Accurate compaction

' Can take long to run
' Updates performed only on stress steps
¾Pressure discontinuities



Pressure vs. Time in Iterative Coupled Run



Improved Coupling Scheme

Calculation chain:

Cr(pf) pf strain PVmult(strain)

Reservoir simulator Rock mech. simulator



Improved Coupling Scheme

Cr(pf) pf strain PVmult(strain)

material 
boundaries

Error here propagates to here



Correlation p’ vs. pf, all cells
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Correlation p’ vs. pf, omit bottom layer
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Correlation p’ vs. pf, omit boundary cells
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Correlation p’ vs. pf at some cells
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Improved Coupling Scheme

Cr(pf) pf strain PVmult(strain)

material 
boundaries

Cr(x, pf)
Modify res. sim. compaction functions to
honour material BC based on PVmult(strain)

Improved pf(x) Improved strain(x)



Improved Coupling Scheme

� extend trends in Cr(x, pf) in space and time to get a 
better predictor for stress simulations

� Modifications done on res. sim. data: Cont. pressure

& Goal
☺Faster than iterative coupling
☺More accurate than explicit coupling



Consistent Compaction Model

� To proceed we need a compaction model which is 
“equivalent” in VISAGE and ECLIPSE

� Definition:
A compaction model is consistent if the flow simulator 
compaction function is derived from the rock mechanics 
poro-elasto-plastic model.



(Idealized) Grain Pack Model
for Sand / Sandstone



Nomenclature
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Basis – Pure Geomechanical Compaction

� Typical measured bulk compressibilities for sands / 
sandstones are much smaller than grain compressibility
9 Grain (quartz): K ~ 38 GPa
9 Sands: K = 100 MPa – 1 GPa
9 Sandstones: K = 5 – 15 GPa
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Basis – Pure Geomechanical Compaction

� Typical measured bulk compressibilities for sands / 
sandstones are much smaller than grain compressibility
9 Grain (quartz): K ~ 38 GPa
9 Sands: K = 100 MPa – 1 GPa
9 Sandstones: K = 5 – 15 GPa

¾ Bulk compressibility cannot be explained by grain 
compression alone

¾ Pore space compaction in a skeleton of rigid grains can only 
be caused by grain reorganization

� Principle of Stable Settlement:
When grain packing changes, it will always seek a more 
stable packing pattern.



Consequences

� Each stress state corresponds to a stable packing 
configuration
¾ the tightest possible packing at that state
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� As packing becomes tighter, further packing will be 
increasingly more difficult to achieve
¾each “packing level” is more stable than previous 

levels
¾Compressibility increases with load



Consequences

� Each stress state corresponds to a stable packing 
configuration
¾ the tightest possible packing at that state

� As packing becomes tighter, further packing will be 
increasingly more difficult to achieve
¾each “packing level” is more stable than previous 

levels
¾Compressibility increases with load

� Relieving stress will not return the soil to a previous, 
less stable packing level



Implications

� At pore level, continuous pore wall failure
is taking place during compaction

� At bulk level, compaction will be observed as 
permanent deformation of pore space (plasticity)

� The soil has no memory of its past stress history 
¾ each packing level can be seen as a “new”

material with its own poro-elasto-plastic parameters



Other mechanisms – complicating factors

� During a load increase the soil may fracture instead of tighter 
packing – seen as a sudden reduction of strength

� The material is not “pure”. The void space may be partly filled 
with bonding agents and / or fine-grained material which may 
break or dissolve during flooding

� Grain particle corners can break off during reorganization
� Fines can settle in pore space or be transported by flowing fluid
� Presence of shear stress may cause dilation in place of or in 

addition to compaction

These effects are not a part of the grain pack model, but should be 
considered separately. However they do not weaken subsequent 
conclusions.



Characteristics of Grain Pack Model
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yield surfaces

elastic region

CSL

Hence, the grain pack model
behaves according to
Critical State Theory:

Change of v along iso-ncl (isotropic 
normal compression line) is 
determined by expansion
of yield surface in the stress plane

Movement along url’s
(unloading-reloading lines)
occurs in the elastic region
in the stress plane

Yield surface expansion is
determined by the hardening rule
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Experimental determination of yield point

Experiment can e.g. be 
performed on three identical 
samples, with differing conditions
1) Increasing pf, σ constant
2) Drained compression
3) Undrained compression

Will provide three different yield
points, all indicative of (p’ : q)
combinations where material will
yield.

p’

v

Y1



Yield surface

p’

q

Y1

Y2
Y3

The p’ : q – paths of
experiments have been
plotted in p’ : q – plane,
and measured yield points
Y1, Y2 and Y3.
These three points indicate
a yield curve for the
material (dashed)

In p’ : q – space we would
have a yield surface.

The yield surface is a boundary for elastically attainable states.



¾For sands / sandstones, Critical State Theory is 
the appropriate failure model to use.

¾Not e.g. Mohr-Coulomb (the most popular choice).
¾Definitely not linear elastic

¾ In practice we use the special case: Cam Clay Model 



Cam clay model

� iso-ncl is a straight line in log(p):v plane
� Yield surfaces are ellipses

� Horizontal axis always present value of p
� Vertical axis determined by critical state angle, which

can be determined from friction angle
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fits the data as good as possible



Grain packing – consistent compaction model 

Assume compaction in a primary loading process can be described by 

2
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To ensure hardening under compaction we require a > 0

For a pure packing process we would expect b ≥ 0.
(upwards concave curve, i.e. accelerated hardening) 

a and b should depend on the initial compressibility K0, and such that two 
different compressibility curves satisfy,
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Examples compaction curves; measured and 
polynomial approximation
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Coefficient a vs. initial compressibility K0

Correlation a vs. Ko
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b/a vs. initial compressibility K0

Straight line: a = 0.05K0

Correlation b/a vs. Ko
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Observations
based on soil samples from six North Sea sandstone reservoirs

� The polynomial approximation fits most data well
� easier determination of λ and H.

� The general approximation fits to varying degree, and should only 
be used when no measured data exist

� Variation of specific volume with mean eff. stress:
� The widely used constant compressibility assumption is almost 

always the worst fit to “correct” curve
� Cam clay model fits data reasonably well for limited load, but is 

also often “way off”
� Could be improved by allowing λ and H to vary with p’

� v(p’) should always be modeled as irreversible



Example Unconsolidated Sand
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Example Weak Sandstone
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Example medium strength Sandstone
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Permeability during compaction

� By the mechanisms of grain packing it is to be expected that
� Permeability is reduced with loading
� The decrease will be largest for high initial permeability
� i.e. heterogeneous soils will tend to be homogenizised by loading



Example lab. test unconsolidated sand
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Example lab. test weak sandstone
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Field Example weak sandstone
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Permeability vs. load – measured data
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Permeability vs. load – assumption
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Permeability Rate of Change During Loading
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Calculating compaction distribution,
Step by step

Rock Mech. Failure Model: Critical State (Cam Clay)
Flow Sim. Compaction function: Derived from Cam Clay

All calculations done on stress step 2; but complete simulation performed at 
each iteration, for illustrative purposes



Iteration Step 1: Using Cr(pf) instead of Cr(p’)
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Iteration Step 2: Scale Cr(pf) to Level Function
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Error in Compaction Computation
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Cerr Each colour:
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Iteration Step 3: 
Subdivide Reservoir into new Material Regions

Ex: All cells with PVmult
in this wedge goes in
Material region 3

New Cr(x, pf) are
constructed by scaling
of original, according to
PVmult range.
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New Material Regions, XY View Middle Layer



Example Using 10 Material Regions. 
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Iteration Step 4:
Adjust Level for all 10 Compaction Functions

PVmult(pf), Cr-Table 1

PVmult(strain), Cr-Table 1
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PVmult(strain) vs. PVmult(pf)
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Error in Compaction Computation
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Does it Matter? – Simulated Production

Field oil production Field cumulative oil

Field pressure Flank well
oil production

Base Cr(pf)
(far from boundaries)
10 material regions
Averaged Cr(pf)



Oil Saturation,
10 Material Regions and Averaged Cr(pf)



Comments

� Rock Tables & Material Regions only needs redefining 
at some stress steps
9 Example run: All updates based on results from stress step no. 2
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� New material regions can be accurately determined in one,
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Comments

� Rock Tables & Material Regions only needs redefining 
at some stress steps
9 Example run: All updates based on results from stress step no. 2

� New material regions can be accurately determined in one,
or a few iterations

¾ Total number of Visage runs considerably reduced

☺ Improved reservoir simulator compaction functions 
reduces Visage run time:
� Example run, CPU time per stress step
¾ Iteration step 1: ~15 minutes
¾ Iteration step 2: 7-8 minutes
¾ Iteration steps 3 & 4: 1-2 minutes



Improved Coupling Scheme:

� Accuracy comparable to fully coupled

� Efficiency comparable to explicit coupled, often better 
(good predictor)
¾1-10% of fully coupled run times



Conclusions

� By compaction of sand / sandstone
� material grows stronger due to tighter packing
� pore space is permanently deformed
¾Critical State Theory

� Disregarding stress state boundary effects (“arching”)
can lead to grave errors, especially for weak materials

� Understanding compaction requires coupled simulations

� An improved coupling scheme has been presented



Simulation of Fault Propagation / Strength

Dynamic Sealing properties of Faults can be 
Modelled if the Stress Distribution Within the Fault 
is known at the start of Fluid Flow,
i.e. at the end of the Fault Generation process



Zero-thickness fault, shared nodes

Hanging wall
constrained

Footwall
displaced sliding



Fault volume, contact plane displacement

Constrained
nodes

Sliding nodes

Fault plane



εyz, vertical displacement 4m



εyz, vertical displacement 10m



εyz, vertical displacement 20m



εyz, vertical displacement 20m, zoomed

Unphysical displacements



εyz, vertical displacement 20m, zoomed

Unphysical displacements



Unsolved issues

� Adaptive mesh, regenerated at each load step
� Pseudo-initialise with interpolated stress state from 

previous load step
� Automatic mesh refinement
� Handling of slip contact planes (surfaces) (elastic OK)
� Modelling of fault volume, fracturing
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